

TEST ADMINISTRATOR MANUAL

GRADE 7 Mathematics STAAR Alternate 2

Administered April 2016

Copyright © 2016, Texas Education Agency. All rights reserved. Reproduction of all or portions of this work is prohibited without express written permission from the Texas Education Agency.

Texas Essential Knowledge and Skills (TEKS) Curriculum Assessed

Grade 7 Mathematics	Cluster 1
Reporting Category 3	Geometry and Measurement: The student will demonstrate an understanding of how to represent and apply geometry and measurement concepts.
Knowledge and Skills Statement 7.9	The student applies mathematical process standards to solve geometric problems.
Essence Statement	Solves problems involving circumference, area, or volume of two- or three-dimensional geometric figures.
Item 1 Prerequisite Skill	identify two-dimensional components of three- dimensional objects (K)
Item 2 Prerequisite Skill	identify two-dimensional components of three- dimensional objects (K)
Item 3 Prerequisite Skill	classify and sort three-dimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes as special rectangular prisms), and triangular prisms, based on attributes using formal geometric language (2)
Item 4 Prerequisite Skill	classify and sort three-dimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes as special rectangular prisms), and triangular prisms, based on attributes using formal geometric language (2)

Grade 7 Mathematics	Cluster 2
Reporting Category 2	

Grade 7 Mathematics			
Reporting Category 1	Probability and Numerical Representations: The student will demonstrate an understanding of how to represent probabilities and numbers.		
Knowledge and Skills Statement 7.6	The student applies mathematical process standards to use probability and statistics to describe or solve problems involving proportional relationships.		
Essence Statement	Uses probability to solve problem relationships.	ns involving proportional	
Item 9 Prerequisite Skill	use concrete models to count fra- whole using words and recognize to equal one whole (2)	ctional parts beyond one how many parts it takes	
Item 10 Prerequisite Skill	use concrete models to count fra- whole using words and recognize to equal one whole (2)	ctional parts beyond one how many parts it takes	
Item 11 Prerequisite Skill	compare two fractions having the denominator in problems by reas and justifying the conclusion usir objects, and pictorial models (3)	e same numerator or coning about their sizes ng symbols, words,	
Item 12 Prerequisite Skill	represent ratios and percents wit fractions, and decimals (6)	h concrete models,	

Grade 7 Mathematics		
Reporting Category 4	Data Analysis and Personal Financial Literacy: The stude will demonstrate an understanding of how to represent and analyze data and how to describe and apply person financial concepts.	
Knowledge and Skills Statement 7.6	The student applies mathematica to use probability and statistics to problems involving proportional r	l process standards o describe or solve elationships.
Essence Statement	Solves problems using data repre	esented in graphs.
Item 13 Prerequisite Skill	use data to create picture and ba	r-type graphs (1)
Item 14 Prerequisite Skill	draw conclusions and generate an using information from picture ar	nd answer questions nd bar-type graphs (1)
Item 15 Prerequisite Skill	draw conclusions and make predi in a graph (2)	ctions from information
Item 16 Prerequisite Skill	draw conclusions and make predi in a graph (2)	ctions from information

Grade 7 Mathematics	
Reporting Category 2	Computations and Algebraic Relationships: The student will demonstrate an understanding of how to perform operations and represent algebraic relationships.
Knowledge and Skills Statement 7.3	The student applies mathematical process standards to add, subtract, multiply, and divide while solving problems and justifying solutions.
Essence Statement	Finds solutions to addition, subtraction, multiplication, or division problems.
Item 17 Prerequisite Skill	use objects and pictorial models to solve word problems involving joining, separating, and comparing sets within 20 and unknowns as any one of the terms in the problem such as $2 + 4 = []$; $3 + [] = 7$; and $5 = [] - 3$ (1)
Item 18 Prerequisite Skill	use objects and pictorial models to solve word problems involving joining, separating, and comparing sets within 20 and unknowns as any one of the terms in the problem such as $2 + 4 = []$; $3 + [] = 7$; and $5 = [] - 3$ (1)
Item 19 Prerequisite Skill	model, create, and describe contextual multiplication situations in which equivalent sets of concrete objects are joined (2)
Item 20 Prerequisite Skill	determine the total number of objects when equally-sized groups of objects are combined or arranged in arrays up to 10 by 10 (3)

Additional resources for STAAR Alternate 2, including the STAAR Alternate 2 Test Administrator Manual and the STAAR Alternate 2 Educator Guide, are available online: http://tea.texas.gov/student.assessment/ special-ed/staaralt/

MATHEMATICS

- Present S _ 1.
- Direct a . Communicate: A student has six squares made out of paper.
- Communicate: Find the cube.

Stimulus 1	
	*

Scoring Instructions					
Student Action		Test Administrator Action			
		$a^{K}A_{M}$, M , a^{M} , M , M , M , M , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2			
I ∩ <u>,</u> ⊠, ∩2⊠, ∩ ,	-	$ [\underline{M}] $; a a a $ / [\underline{M}] $; an a na na <u>M</u> nn <u>M</u> n.			
		$a \wedge \mathbf{B} \boxtimes $ $\boxtimes a \cap 1 a \cap \boxtimes A \cap 2$.			
A /⊠na, n _⊠n⊠n ,		a ʿ C م مَعْرَبُ مَعْمَا مَعْمَا مَعْمَا مُعْمَا مُعْمَا مُعْمَا مُعْمَا مُعْمَا مُعْمَا مُعْمَا مُ			

- Present S , 2a an 2.

- Direct n , a an , a n S 2.
 Communicate: Find a figure that was used to make the box.

- Present S , 3a an 3.
- Direct Sa. Communicate: A student was sorting geometric figures in math class. The student made this group because the figures have bases that are the same shape.
- Direct $n \square a$ an $\square n \square n S = 3$.
- Communicate: Find the geometric figure that belongs in the group the student made.

- Present S 🚽 4a an 4.
- Direct

- Present S ____ 5.
- Direct 100. Communicate: This is the number 100. This is 100 dots.
- Direct n x n n 10 n x . Communicate: This is the number 10. This is 10 dots. 100 divided by 10 is 10.
- Direct $(1, \mathbb{A}_{j})$ (1, 10)
- Direct 1. Communicate: This is the number 1. This is 1 dot. 10 divided by 10 is 1.
- Communicate: Find the table that shows numbers that get smaller by dividing by 10.

- Present S , 6a an 6.
- Direct A JAS Jacobian Communicate: These are two rows of a table that shows a pattern that gets smaller because each number in the first column is divided by 10.
- Direct
- - Direct
- Communicate: Find the table that shows a pattern that gets smaller because each number in the first column is divided by 10.

Scoring Instructions				
Student Action		Test Administrator Action		
		$a^{A}A_{A}$, $A_{j}^{A}6a^{A}A_{j}$, $A_{j}^{A}7.$		
I 1,⊠, 1⊠, 1 a 1 1 600, 60 án 60, 6,	-	a n n 600, 60, an 60, 6 an <i>communicate</i> "The table with 600, 60 and 60, 6 shows a pattern that gets smaller because each number in the first column is divided by 10"; an a n a na na an		
A a , , , , , , , , , , , , , , , , , ,		$a \wedge \mathbf{B}_{\mathcal{M}_{j}}$ $\mathcal{M}_{j} \cap 6 a \cap \mathcal{M}_{j} / \mathcal{M}_{j} = \mathcal{M}_{j} \cap 7.$		
A a ,⊠, , , , , , , , , , , , , , , , , ,	-	a ^k C,⊠, ⊠,16an ⊠, ⊠,17.		

Scoring Instructions				
Student Action		Test Administrator Action		
l nin ni 6an 3in Si, 7,	-	$a \wedge A \square, \square $		
I n_⊠1⊠n n 6 an 3 nS _ '7 ,'	-	∅,' one ⋈ a, ⋈ a a ∅,' n ! ' n a . Ha/ n n ⋈ an n . Ha/ . OR ' a n . P⋈/ a,⋈140 5 = 8. OR . . A,⋈ n,⋈ a, a,⋈ . . Ha/ n,⋈ a, a,⋈ . . Ha/ n,⋈ a, n . . R a n,a .		
		$a^{A}B_{A}$, $A^{A}_{i}7a^{A}$, A^{A}_{i}		
A a a an , $n \boxtimes n$ n n 6 an 3 n S 7 ,		$a \stackrel{C}{\longrightarrow} \mathfrak{Q}_{j} \mathfrak{Q}_{$		

- Present S , 8a an 8. Communicate:

- Present S , 9.
- Direct
 Direct
 Direct
 A student keeps pencils in his backpack.
 Direct
 A student keeps pencils in his backpack.
 A student keeps pencils in his backpack.
 A student keeps pencils in his backpack.

- Present S ____ 12a an 12 .

- Direct
 May a Signal Signa
 - Communicate: Find the pair of students who have a chance of winning a prize.

Stimulus 12a

Scoring Instructions				
Student Action	Test Administrator Action			
I in a \mathbb{A}_{s}^{s} S and \mathbb{D}_{s}^{s} in S $=$ 12 ,	$\Rightarrow \begin{array}{c} a \land A \boxtimes & \square & \square & \square & \square \\ \square & \square & \square & \square & \square & \square$			
l n⊠, n⊠, n a ⊠, S an D⊠n n S', 1/2,	⇒ , a na na Ann An			
A a a \square	$\Rightarrow \begin{array}{c} \mathbf{a} & \mathbf{B} & \mathbf{M}, & \mathbf{M}, & \mathbf{M}, & \mathbf{M}, \\ \mathbf{M}, \\ \mathbf{M}, & \mathbf{M}, \\ \mathbf{M}, \\ \mathbf{M}, & \mathbf{M}, \\ \mathbf{M}, \\$			
A a a $(1 \ M)$, $(1 \ M)$ $(2 \ M)$ $(2 \ M)$ $(3 \ M)$ $(3 \ M)$ $(3 \ M)$ $($	$\Rightarrow \begin{array}{c} a \stackrel{\land}{} \mathbf{C} \stackrel{\boxtimes}{} \qquad $			

- Present S ____ 13.
- A JAS ____ 13. Communicate: This bar graph shows students' favorite sports. - Direct
- Direct
- - Direct
- هـ٩ هـ٩ هـ٩ x-a
 . Communicate: Bowling. Basketball.

 ١
 هـ٩ y-a
 . Communicate: 0. 1. 2. 3. 4.

 a
 هـ٩ ٥ هـ٩ 4. Communicate: Four students picked bowling as their

 - Direct 1 favorite sport.
- Communicate: Find bowling on the bar graph.

- Present S 📡 14a an 14 .

-

Scoring Instructions			
Student Action		Test Administrator Action	
Inna,⊠,a≮a,n S,14a,		$a \wedge A \boxtimes_{j} \boxtimes_{j} 14 a^{j} \boxtimes_{j} \boxtimes_{j}$	
l n_⊠ n⊠ n a_⊠ a ^a, nS', '14a, '	-	a a f a n a an n n a a a f a n S communicate "This is the bar where the data for the new student who picked basketball would be added"; an a n a na a a a an	
A a , M, J₂, h h h a M, a [≤] a, h S , 14a,		$a \wedge \mathbf{B} \boxtimes $ $\boxtimes $ 14 $a \wedge \boxtimes $ $\boxtimes $	
A a M	-	$a \stackrel{\wedge}{\mathbf{C}} \square $	

- Present S , 15a an 15 .
- Direct S. S. J. 15a. Communicate: This bar graph shows the number of students who picked their favorite school activity.
- Direct $\square_{\mathcal{M}}$ a an $\mathcal{M}_{\mathcal{M}}$ $\square_{\mathcal{S}}$ 15.
- Communicate: Find the number of students who picked the pep rally as their favorite school activity.

- Present S _ 17.
- Direct
 \mathbb{A}_{j} \mathbb{A}_{j} . Communicate: There are four flowers in this row.
- One, two, three, four. Direct A_{μ} A_{μ} A_{μ} A_{μ} . Communicate: There are four flowers in this row. One, two, three, four. - Direct
- Direct $A = A_{j}$ A_{j} . Communicate: This model can be used to show that A + 4 equals 8.
- Communicate: Find the model that can be used to show that 4 + 4 equals 8.

Stimulus 17

- Present S , 18a an 18.
- *Communicate:* This model can be used to show that 6 + 6 equals 12.
- Direct n_{A} a an A_{A} n_{S} 18.
- Communicate: Find the model that can also be used to show that 6 + 6 equals 12.

Scoring Instructions			
Student Action	Test Administrator Action		
i nin ⊭ ,⊠, 12,	$\Rightarrow \begin{array}{c} a \land A \boxtimes, \qquad \boxtimes \uparrow 18 a \uparrow \boxtimes \swarrow \swarrow \swarrow, \qquad \boxtimes \downarrow 19. \end{array}$		
I n,⊠, 1⊠, n ⊭,⊠, 12 ,	 ■ a Q₁ n n ■ a n a n a na a a na a a na a 		
A a , A , A , A , A , A , A , A , A , A	$\Rightarrow \begin{array}{c} \mathbf{a} \land \mathbf{B} \boxtimes, \qquad \boxtimes^{1} 18 \ \mathbf{a}^{1} \boxtimes \\ \mathbb{Q}^{1} 19. \end{array} $		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Rightarrow \qquad a \stackrel{\land \mathbf{C}}{\boxtimes} \qquad \stackrel{\boxtimes}{\longrightarrow} 18 a^{\uparrow} \qquad \stackrel{\boxtimes}{\longrightarrow} 19.$		

- Present S ____ 19.
- Direct
 Direct

- Present S , 20a an 20.
- *Direct* 0, \mathbb{A}_{S}^{S} 20a. *Communicate:* The same number of trees is in each row of trees at a park. This is one of the rows. The park has four rows of trees.
- Direct A_{μ} a an A_{μ} and A_{μ} and A_{μ} and A_{μ} . Communicate: Find the number of trees in the four rows.

Stimulus 20a

TEST ADMINISTRATOR MANUAL

STAAR ALTERNATE 2 GRADE 7 Mathematics April 2016